Representations of supersymmetry algebras with Dirac dispinor generators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9423
(http://iopscience.iop.org/0305-4470/9/3/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:15

Please note that terms and conditions apply.

Representations of supersymmetry algebras with Dirac bispinor generators

P Kosiński, J Rembieliński and W Tybor
Institute of Physics, University of Lodz, Lodz, Narutowicza 68, Poland

Received 8 May 1975, in final form 13 September 1975

Abstract

Explicit formulae for linear and nonlinear realizations of the supersymmetry groups with Dirac bispinor generators are given and Cartan forms are obtained.

1. hetrodaction

Spersymmetry algebras introduced recently by several authors (Wess and Zumino 1974, Volkov and Akulov 1973, Gel'fand and Lichtman 1972) bring together bosons adfermions into irreducible multiplets. This remarkable property results from the fact that the supersymmetry algebra contains both commutators and anticommutators. The spersymmetry algebra considered by Wess and Zumino (1974), and from another point of view by Volkov and Akulov (1973), has the following form:

$$
\begin{align*}
& \left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=2 \sigma_{\mu_{\alpha \dot{\beta}}} P^{\mu} \\
& \left\{Q_{\alpha}, Q_{\beta}\right\}=\left\{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\right\}=0 \tag{1}\\
& {\left[Q_{\alpha}, P_{\mu}\right]=0}
\end{align*}
$$

where Q_{a} is the two-component spinor. It is interesting that this algebra is the only posible non-trivial extension of Poincaré algebra by the two-component spinor Q.
All possible extensions of the Poincaré algebra by a four-component bispinor W have been investigated by Gel'fand and Lichtman (1972). They found that there are sven possibilities

where ${ }^{\dagger}$

$$
\Pi_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{5}\right)
$$

In the present paper in $\S 2$ we investigate the linear, and in $\S 3$ the nonlinear, realizations of the supersymmetry group with generators obeying the Gel'fandLichtman algebras.

2. Linear representations

2.1. General remarks

To obtain the linear representations of the Gel'fand-Lichtman supersymmetry we use the beautiful method of Salam and Strathdee (1974) extended by Ferrara et al (1974). The representations of the supersymmetry group G are induced from those of the Lorentz group L. We are interested in the action of the generators P_{μ} and W on a superfield $\phi(x, \theta, \bar{\theta})$ defined on a cosets space (superspace), where the components of the constant bispinors θ and $\bar{\theta}=\theta^{\dagger} \gamma_{0}$ are the generating elements of the Grassman algebra.

Let us start with some remarks.
(i) The algebras $A^{ \pm}, B^{ \pm}, C^{ \pm}$are not invariant under space inversion.
(ii) The algebras $A^{ \pm}, B^{ \pm}$, and $C^{ \pm}$contain anticommutators of the form $\left\{F, F^{\dagger}\right\}=0$, which implies an indefinite metric in the space of states \ddagger.
(iii) Re-defining $P_{\mu} \rightarrow P_{\mu}, W \rightarrow R^{-1} W$ and letting R tend to infinity we see that the algebras $B^{ \pm}$are the contractions of the algebras $A^{ \pm}$. Putting $P_{\mu} \rightarrow R^{-1} P_{\mu} . W \rightarrow R^{\frac{-1}{2} W}$ we can show in a similar manner that the algebras $C^{ \pm}$are the contractions of the $A^{ \pm}$ too.
(iv) The algebras $C^{ \pm}$and D contain the algebra of Wess and Zumino as a subalgebra.
(v) The algebras $A^{ \pm}, B^{ \pm}$and $C^{ \pm}$have ideals generated by $W_{\mp}=\Pi_{ \pm} W$ and $\bar{W}_{\mp}=\bar{W} \Pi_{ \pm}$. The quotient algebras $P \oplus W \oplus \bar{W} / W_{\mp} \oplus \bar{W}_{\mp}$ are isomorphic to the WessZumino algebra in the cases $A^{ \pm}$and $C^{ \pm}$, and to the trivial one

$$
\left\{W_{ \pm}, W_{ \pm}\right\}=\left\{\bar{W}_{ \pm}, \bar{W}_{ \pm}\right\}=\left\{W_{ \pm}, \bar{W}_{ \pm}\right\}=0 \quad\left[P_{\mu}, W_{ \pm}\right]=0
$$

in the cases $B^{ \pm}$. So the supersymmetry constraints $W_{\mp} \phi=\bar{W}_{\mp} \phi=0$ imply representations of the quotient algebra. The constraints $W_{\mp} \phi=0$ and $\tilde{W}_{\mp} \phi=0$ have, in all parametrizations, the forms

$$
\left(\Pi_{F}\right)_{\alpha \beta} \frac{\partial}{\partial \bar{\theta}_{\beta}} \phi=0 \quad \text { and } \quad\left(\Pi_{ \pm}\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\alpha}} \phi=0
$$

respectively.
(vi) A superfield can be expanded in a power series in θ_{α} and $\bar{\theta}_{\dot{\alpha}}$

$$
\phi(x, \theta, \bar{\theta})=\sum_{k, r} \phi^{\left[\alpha_{1} \ldots \alpha_{k} I \dot{\beta}_{1} \ldots \dot{\beta}_{r}\right]} \theta_{\alpha_{1}} \ldots \theta_{\alpha_{k}} \bar{\theta}_{\dot{\beta}_{1}} \ldots \bar{\theta}_{\dot{\beta}_{r}}
$$

\dagger We use the Dirac matrices with the following properties: $\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \eta_{\mu \nu} \boldsymbol{\gamma}^{\dagger}=-\gamma_{,} \gamma_{0}^{\dagger}=\gamma_{0} y_{s}^{\dagger}=\gamma_{s}$ $\gamma_{s}^{2}=1, \eta_{\mu \nu}=\operatorname{diag}(+\cdots--)$.
\ddagger We are grateful to Professor I T Lopuszanski for this remark.

This expansion has a finite number of terms because the Grassman algebra generated by θ_{a} and $\bar{\theta}_{\dot{\alpha}}$ is finite. Fields $\phi(x)^{\left.\left[\alpha_{1} \ldots \alpha_{k}\right\} \mathcal{\beta}_{1} \ldots \dot{\beta}_{7}\right]}$ are antisymmetric in indices $\left[\alpha_{1} \ldots \alpha_{k}\right]$ $\operatorname{and}\left[\dot{\beta}_{1} \ldots \dot{\beta}_{r}\right]$. The number of independent components of $\phi(x)^{\left[\alpha_{1} \ldots \alpha_{k}\right]\left[\dot{\beta}_{1} \ldots \dot{\beta}_{r}\right]}$ equals (0) ${ }^{4}$). These fields are generally reducible. If the superfield $\phi(x, \theta, \bar{\theta})$ transforms according to the representation D of the Lorentz group then the coefficients

$$
\begin{align*}
& D_{0}\left(\bar{D}_{0}\right) \sim D^{00} \\
& D_{1}\left(\bar{D}_{1}\right) \sim D^{\frac{1}{2} 0} \oplus D^{0 \frac{1}{2}} \\
& D_{2}\left(\bar{D}_{2}\right) \sim D^{\frac{1}{22}} \oplus 2 D^{00} \tag{3}\\
& D_{3}\left(\bar{D}_{3}\right) \sim D^{\frac{1}{20}} \oplus D^{0 \frac{1}{2}} \\
& D_{4}\left(\bar{D}_{4}\right) \sim D^{00} .
\end{align*}
$$

Imposing on a superfield in the cases $A^{ \pm}, B^{ \pm}$and $C^{ \pm}$one of the conditions $W_{\mp} \phi=0$ or $\bar{W}_{\mp} \phi=0$ one finds that D_{k} or \bar{D}_{r} reduces to D_{k}^{\prime} or \bar{D}_{r}^{\prime}, where

$$
\begin{array}{ll}
D_{0}^{\prime} \sim D^{00} & \bar{D}_{0}^{\prime} \sim D^{00} \\
D_{1}^{\prime} \sim D^{\frac{1}{20}} & \bar{D}_{1}^{\prime} \sim D^{0 \frac{1}{2}} \\
D_{2}^{\prime} \sim D^{00} & \bar{D}_{2}^{\prime} \sim D^{00} \tag{4}\\
D_{3}^{\prime} \sim D^{\frac{10}{20}} & \bar{D}_{3}^{\prime} \sim D^{0 \frac{1}{2}} \\
D_{4}^{\prime} \sim D^{00} & \bar{D}_{4}^{\prime} \sim D^{00} .
\end{array}
$$

2.2 Representations of the algebras A

Wecan choose three different parametrizations of the superspace

$$
\begin{align*}
& \exp [\mathrm{i}(x P+\bar{W} \theta+\bar{\theta} W)]=\phi_{0}(x, \theta, \bar{\theta}) \tag{5a}\\
& \exp [\mathrm{i}(x P)] \exp [\mathrm{i}(\bar{W} \theta+\bar{\theta} W)]=\phi_{1}(x, \theta, \bar{\theta}) \tag{5b}\\
& \exp [\mathrm{i}(\bar{W} \theta+\bar{\theta} W)] \exp [\mathrm{i}(x P)]=\phi_{2}(x, \theta, \bar{\theta}) \tag{5c}
\end{align*}
$$

These superfields are connected by the relations

$$
\begin{align*}
& \phi_{1}(x, \theta, \bar{\theta})=\phi_{0}\left(x, \theta-\frac{1}{2} i \Pi_{ \pm}(\gamma x) \theta, \bar{\theta}+\frac{1}{2} \mathrm{i} \bar{\theta} \Pi_{ \pm}(\gamma x)\right) \tag{6a}\\
& \phi_{2}(x, \theta, \bar{\theta})=\phi_{0}\left(x, \theta+\frac{1}{2} \Pi_{ \pm}(\gamma x) \theta, \bar{\theta}-\frac{1}{2} i \bar{\theta} \Pi_{ \pm}(\gamma x)\right) . \tag{6b}
\end{align*}
$$

The action of the translation and the supersymmetry transformation on the superfields

$$
\begin{align*}
& \exp (i a P) \phi_{0}(x, \theta, \bar{\theta})=\phi_{0}\left(x+a,\left(1-\frac{1}{2} \mathrm{i} \Pi_{ \pm}(\gamma a)\right) \theta, \bar{\theta}\left(1+\frac{1}{2} \mathrm{i} \Pi_{ \pm}(\gamma a)\right)\right) \\
& \operatorname{expli}(\bar{\zeta} W+\bar{W} \zeta)] \phi_{0}(x, \theta, \bar{\theta}) \\
&= \phi_{0}\left(x_{\mu}+\frac{1}{2} \mathrm{i}\left(\bar{\zeta} \overline{\Pi_{ \pm}} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right), \theta+\left(1+\frac{1}{2} \mathrm{i} \Pi_{ \pm}(\gamma x)\right) \zeta-\frac{1}{12} \Pi_{ \pm} \gamma^{\mu}(\zeta-\theta)\right. \\
& \times\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right) \\
&\left.\bar{\theta}+\bar{\zeta}\left(1-\frac{1}{2} \mathrm{i} \Pi_{ \pm}(\gamma x)\right)+\frac{1}{12}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right)(\bar{\zeta}-\bar{\theta}) \Pi_{ \pm} \gamma^{\mu}\right) \tag{7a}
\end{align*}
$$

$$
\begin{align*}
& \exp (\mathrm{i} a P) \phi_{1}(x, \theta, \bar{\theta})=\phi_{1}(x+a, \theta, \bar{\theta}) \\
& \exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)] \phi_{1}(x, \theta, \bar{\theta}) \\
&= \phi_{1}\left(x_{\mu}+\frac{1}{2} \mathrm{i}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right), \theta+\left(1+\mathrm{i} \Pi_{ \pm}(\gamma x)\right) \zeta-\Pi_{ \pm} \gamma^{\mu}\left(\frac{1}{3} \zeta+\frac{1}{6} \theta\right)\right. \\
& \times\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right), \\
&\left.\bar{\theta}+\bar{\zeta}\left(1-\mathrm{i} \Pi_{ \pm}(\gamma x)\right)+\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right)\left(\frac{1}{3} \bar{\zeta}+\frac{1}{6} \bar{\theta}\right) \Pi_{ \pm} \gamma^{\mu}\right) \tag{76}\\
& \exp (\mathrm{i} a P) \phi_{2}(x, \theta, \bar{\theta})=\phi_{2}\left(x+a,\left(1-\mathrm{i} \Pi_{ \pm}(\gamma a)\right) \theta, \bar{\theta}\left(1+\mathrm{i} \Pi_{ \pm}(\gamma a)\right)\right. \\
& \exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)] \phi_{2}(x, \theta, \bar{\theta}) \\
&= \phi_{2}\left(x_{\mu}+\frac{1}{2} \mathrm{i}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right), \theta+\zeta+\Pi_{ \pm} \gamma^{\mu}\left(\frac{1}{3} \theta+\frac{1}{6} \zeta\right)\right. \\
& \times\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right), \\
&\left.\bar{\theta}+\bar{\zeta}-\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right)\left(\frac{1}{6} \bar{\zeta}+\frac{1}{3} \bar{\theta}\right) \Pi_{ \pm} \gamma^{\mu}\right) \tag{7c}
\end{align*}
$$

or, in the infinitesimal form

$$
\begin{align*}
& \delta_{a} \phi_{0}=\left(a_{\mu} \frac{\partial}{\partial x_{\mu}}-\frac{1}{2} \mathrm{i} \Pi_{ \pm}(\gamma a) \theta \frac{\partial}{\partial \theta}+\frac{1}{2} \mathrm{i} \bar{\theta} \Pi_{ \pm}(\gamma a) \frac{\partial}{\partial \bar{\theta}}\right) \phi_{0} \\
& \delta_{\zeta} \phi_{0}= {\left[\frac{1}{2} \mathrm{i}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right) \frac{\partial}{\partial x_{\mu}}+\left(\left(1+\frac{1}{2} \mathrm{i} \Pi_{ \pm}(\gamma x)\right) \zeta+\frac{1}{12} \Pi_{ \pm} \gamma^{\mu} \theta\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right)\right) \frac{\partial}{\partial \theta}\right.} \\
&\left.\quad+\left(\bar{\zeta}\left(1-\frac{1}{2} \Pi_{ \pm}(\gamma x)\right)-\frac{1}{12}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right) \bar{\theta} \Pi_{ \pm} \gamma^{\mu}\right) \frac{\partial}{\partial \bar{\theta}}\right] \phi_{0} \tag{8a}\\
& \delta_{a} \phi_{1}=\left(a_{\mu} \frac{\partial}{\partial x_{\mu}}\right) \phi_{1} \\
& \delta_{\zeta} \phi_{1}= {\left[\frac{1}{2} \mathrm{i}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right) \frac{\partial}{\partial x_{\mu}}+\left(\left(1+\mathrm{i} \Pi_{ \pm}(\gamma x)\right) \zeta-\Pi_{ \pm} \gamma^{\mu} \frac{1}{6} \theta\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right)\right) \frac{\partial}{\partial \theta}\right.} \\
&\left.\quad+\left(\bar{\zeta}\left(1-\mathrm{i} \Pi_{ \pm}(\gamma x)\right)+\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right) \frac{1}{6} \bar{\theta} \Pi_{ \pm} \gamma^{\mu}\right) \frac{\partial}{\partial \bar{\theta}}\right] \phi_{1} \tag{8b}\\
& \delta_{a} \phi_{2}=\left(a_{\mu} \frac{\partial}{\partial x_{\mu}}-\mathrm{i} \Pi_{ \pm}(\gamma a) \theta \frac{\partial}{\partial \theta}+\mathrm{i} \bar{\theta} \Pi_{ \pm}(\gamma a) \frac{\partial}{\partial \bar{\theta}}\right) \phi_{2} \\
& \delta_{\zeta} \phi_{2}= {\left[\frac{1}{2} \mathrm{i}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right) \frac{\partial}{\partial x_{\mu}}+\left(\zeta+\Pi_{ \pm} \gamma^{\mu} \frac{1}{3} \theta\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right)\right) \frac{\partial}{\partial \theta}\right.} \\
&\left.\quad+\left(\bar{\zeta}-\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right) \frac{1}{3} \bar{\theta} \Pi_{ \pm} \gamma^{\mu}\right) \frac{\partial}{\partial \bar{\theta}}\right] \phi_{2} . \tag{8c}
\end{align*}
$$

In these cases no simple constraints beyond those discussed above, i.e. $W_{\mp} \phi=0$, $\bar{W}_{\mp} \phi=0$, can be imposed.

2.3 Representations of the algebras $B^{ \pm}$

In this case three different parametrizations (equations ($5 a$), ($5 b$) and ($5 c$)) can also be chosen. The superfields ϕ_{0}, ϕ_{1} and ϕ_{2} are connected by relations ($6 a$) and ($6 b$). The
adion of the group elements on the superfields is
$\operatorname{app}(1 a P) \phi_{0}(x, \theta, \bar{\theta})=\phi_{0}\left(x+a,\left(1-\frac{1}{2} \Pi_{ \pm}(\gamma a)\right) \theta, \bar{\theta}\left(1+\frac{1}{2} \mathrm{i}_{ \pm}(\gamma a)\right)\right)$
$\exp [i(\xi W+\bar{W} \zeta)] \phi_{0}(x, \theta, \bar{\theta})$

$$
\begin{equation*}
=\phi_{0}\left(x, \theta+\left(1+\frac{1}{2} \Pi_{ \pm}(\gamma x)\right) \zeta, \bar{\theta}+\bar{\zeta}\left(1-\frac{1}{2} \Pi_{ \pm}(\gamma x)\right)\right) \tag{9a}
\end{equation*}
$$

$\exp (i a P) \phi_{1}(x, \theta, \bar{\theta})=\phi_{1}(x+a, \theta, \bar{\theta})$
eqni($\bar{\zeta} \bar{W}+\bar{W} \zeta)] \phi_{1}(x, \theta, \bar{\theta})=\phi_{1}\left(x, \theta+\left(1+\mathrm{i} \Pi_{ \pm}(\gamma x)\right) \zeta, \bar{\theta}+\bar{\zeta}\left(1-\mathrm{i} \Pi_{ \pm}(\gamma x)\right)\right)$
$\exp (i a P) \phi_{2}(x, \theta, \bar{\theta})=\phi_{2}\left(x+a,\left(1-\mathrm{i} \Pi_{ \pm}(\gamma a)\right) \theta, \bar{\theta}\left(1+i \Pi_{ \pm}(\gamma a)\right)\right)$
$\exp [\overline{(} \bar{\zeta} W+\bar{W} \zeta)] \phi_{2}(x, \theta, \bar{\theta})=\phi_{2}(x, \theta+\zeta, \bar{\theta}+\bar{\zeta})$
or, in the infinitesimal form

$$
\begin{align*}
& \delta_{a} \phi_{0}=\left(a_{\mu} \frac{\partial}{\partial x_{\mu}}-\frac{1}{2} \Pi_{ \pm}(\gamma a) \theta \frac{\partial}{\partial \theta}+\frac{1}{2} \mathrm{i} \bar{\theta} \Pi_{ \pm}(\gamma a) \frac{\partial}{\partial \bar{\theta}}\right) \phi_{0} \\
& \delta_{\zeta} \phi_{0}=\left(\left(1+\frac{1}{2} \Pi_{ \pm}(\gamma x)\right) \zeta \frac{\partial}{\partial \theta}+\bar{\zeta}\left(1-\frac{1}{2} \mathrm{i} \Pi_{ \pm}(\gamma x)\right) \frac{\partial}{\partial \bar{\theta}}\right) \phi_{0} \tag{10a}\\
& \delta_{a} \phi_{1}=\left(a_{\mu} \frac{\partial}{\partial x_{\mu}}\right) \phi_{1} \\
& \delta_{\zeta} \phi_{1}=\left(\left(1+\mathrm{i} \Pi_{ \pm}(\gamma x)\right) \zeta \frac{\partial}{\partial \theta}+\bar{\zeta}\left(1-\mathrm{i} \Pi_{ \pm}(\gamma x)\right) \frac{\partial}{\partial \bar{\theta}}\right) \phi_{1} \tag{10b}\\
& \delta_{a} \phi_{2}=\left(a_{\mu} \frac{\partial}{\partial x_{\mu}}-\mathrm{i} \Pi_{ \pm}(\gamma a) \theta \frac{\partial}{\partial \theta}+\mathrm{i} \bar{\theta} \Pi_{ \pm}(\gamma a) \frac{\partial}{\partial \bar{\theta}}\right) \phi_{2} \\
& \delta_{\zeta} \phi_{2}=\left(\zeta \frac{\partial}{\partial \theta}+\bar{\zeta} \frac{\partial}{\partial \bar{\theta}}\right) \phi_{2} . \tag{10c}
\end{align*}
$$

Because θ and $\bar{\theta}$ enter in the differential operators (equation (10)) only as coefficients before $\partial / \partial \theta$ and $\partial / \partial \bar{\theta}$ respectively, the conditions $\partial \phi / \partial \theta=0$ and $\partial \phi / \partial \bar{\theta}=0$ are spersymmetry-invariant constraints. If these constraints are imposed we have
$\left(\Pi_{1}\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\alpha}} \phi=0, \quad\left(\Pi_{F}\right)_{\alpha \beta} \frac{\partial}{\partial \bar{\theta}_{\beta}} \phi=0, \quad\left(\Pi_{F}\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\alpha}} \phi=0, \quad\left(\Pi_{ \pm}\right)_{\alpha \beta} \frac{\partial}{\partial \tilde{\theta}_{\beta}} \phi=0$.
The first two constraints are the same as in the case $A^{ \pm}$. We can show that from the ober two it follows again that $\partial \phi / \partial \theta=0$ and $\partial \phi / \partial \bar{\theta}=0$. Indeed, let us consider, for sample, the third parametrization. Then $W_{ \pm}$and $\bar{W}_{ \pm}$act as $\left(\Pi_{ \pm}\right)_{\alpha \beta}\left(\partial / \partial \bar{\theta}_{\beta}\right)$ and $\left(\mathbb{H}_{4}\right)_{\infty \rho}\left(\theta / \partial \theta_{\alpha}\right)$. From the commutation rules

$$
\begin{equation*}
\left[P_{\mu}, W_{ \pm}\right]=\gamma_{\mu} W_{\mp}, \quad\left[P_{\mu}, \bar{W}_{ \pm}\right]=-\bar{W}_{\mp} \boldsymbol{\gamma}_{\mu} \tag{11}
\end{equation*}
$$

and from the constraints under consideration, $W_{ \pm} \phi=0$ and $\bar{W}_{ \pm} \phi=0$, one obtains $W_{\mp} \phi=0$ and $\bar{W}_{\mp} \phi=0$ respectively. Thus

$$
\partial \phi / \partial \theta \equiv W \phi=\left(W_{ \pm}+W_{\mp}\right) \phi=0
$$

4

$$
\partial \phi / \partial \bar{\theta} \equiv \bar{W} \phi=\left(\bar{W}_{ \pm}+\bar{W}_{\mp}\right) \phi=0 .
$$

The same can be shown with small modification for the other parametrizations. Finally, we have the following possibilities for the constraints:

$$
\begin{align*}
& \left(\Pi_{ \pm}\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\alpha}} \phi=0 \tag{12a}\\
& \left(\Pi_{\mp}\right)_{\alpha \beta} \frac{\partial}{\partial \bar{\theta}_{\beta}} \phi=0 \tag{12b}\\
& \frac{\partial}{\partial \theta} \phi=0 \tag{12c}\\
& \frac{\partial}{\partial \bar{\theta}} \phi=0 . \tag{12d}
\end{align*}
$$

In accord with these, various representations of the Lorentz group occur in the superfield expansion (see table 1).

Table 1. The Lorentz transformation properties of superfield components.

Constraints	Algebra B^{+}	Algebra B^{-}
$(12 a)$	$D \otimes \bar{D}_{k}^{\prime} \otimes \bar{D}_{r}$	$D \otimes D_{k}^{\prime} \otimes \bar{D}_{r}$
$(12 b)$	$D \otimes D_{k} \otimes \bar{D}_{r}^{\prime}$	$D \otimes D_{k} \otimes D_{r}^{\prime}$
$(12 c)$	$D \otimes \bar{D}_{r}$	$D \otimes \bar{D}_{r}$
$(12 d)$	$D \otimes D_{k}$	$D \otimes D_{k}$
$(12 a)$ and $(12 b)$	$D \otimes \bar{D}_{k}^{\prime} \otimes \bar{D}_{r}^{\prime}$	$D \otimes D_{k}^{\prime} \otimes D_{r}^{\prime}$
$(12 a)$ and $(12 d)$	$D \otimes \bar{D}_{k}^{\prime}$	$D \otimes D_{k}^{\prime}$
$(12 b)$ and $(12 c)$	$D \otimes \bar{D}_{r}^{\prime}$	$D \otimes D_{r}^{\prime}$

2.4 Representations of the algebras $C^{ \pm}$

In this case, because of the commutation rules $\left[P_{\mu}, W\right]=\left[P_{\mu}, \bar{W}\right]=0$, the possible parametrizations are

$$
\begin{align*}
& \exp [\mathrm{i}(x P+\bar{\theta} W+\bar{W} \theta)]=\phi_{0}(x, \theta, \bar{\theta}) \tag{13a}\\
& \exp [\mathrm{i}(x P+\bar{\theta} W)] \exp (\mathrm{i} \bar{W} \theta)=\phi_{1}(x, \theta, \bar{\theta}) \tag{136}\\
& \exp [\mathrm{i}(x P+\bar{W} \theta)] \exp (\mathrm{i} \bar{\theta} W)=\phi_{2}(x, \theta, \bar{\theta}) \tag{13c}
\end{align*}
$$

The superfields are connected by the relations

$$
\begin{align*}
\phi_{1}(x, \theta, \bar{\theta}) & =\phi_{0}\left(x_{\mu}+\frac{1}{2} \mathrm{i} \bar{\theta} \Pi_{ \pm} \gamma_{\mu} \theta, \theta, \bar{\theta}\right) \\
\phi_{2}(x, \theta, \bar{\theta}) & =\phi_{0}\left(x_{\mu}-\frac{1}{2} \mathrm{i} \bar{\theta} \Pi_{ \pm} \gamma_{\mu} \theta, \theta, \bar{\theta}\right) \tag{14}
\end{align*}
$$

The group element action is $\exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)] \phi_{0}(x, \theta, \bar{\theta})=\phi_{0}\left(x_{\mu}+\frac{1}{2} \mathrm{i}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right), \theta+\zeta, \bar{\theta}+\bar{\zeta}\right)$.
$\exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)] \phi_{1}(x, \theta, \bar{\theta})=\phi_{1}\left(x_{\mu}-\mathrm{i} \bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta-\frac{1}{2} \mathrm{i} \bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \zeta, \theta+\zeta, \bar{\theta}+\bar{\zeta}\right)$
$\exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)] \phi_{2}(x, \theta, \bar{\theta})=\phi_{2}\left(x_{\mu}+\mathrm{i} \bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta+\frac{1}{2} \mathrm{i} \bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \zeta, \theta+\zeta, \bar{\theta}+\bar{\zeta}\right)$
and in all three cases $\exp (\mathrm{i} a P) \phi(x, \theta, \bar{\theta})=\phi(x+a, \theta, \bar{\theta})$. In the infinitesimal form we bave

$$
\begin{align*}
& \delta_{\zeta} \phi_{0}=\left(\frac{1}{2} \mathrm{i}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta-\bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta\right) \frac{\partial}{\partial x_{\mu}}+\zeta \frac{\partial}{\partial \theta}+\bar{\zeta} \frac{\partial}{\partial \bar{\theta}}\right) \phi_{0} \tag{16a}\\
& \delta_{\zeta} \phi_{1}=\left(-\mathrm{i} \bar{\theta} \Pi_{ \pm} \gamma_{\mu} \zeta \frac{\partial}{\partial x_{\mu}}+\zeta \frac{\partial}{\partial \theta}+\bar{\zeta} \frac{\partial}{\partial \bar{\theta}}\right) \phi_{1} \tag{16b}\\
& \delta_{\zeta} \phi_{2}=\left(\mathrm{i} \bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \theta \frac{\partial}{\partial x_{\mu}}+\zeta \frac{\partial}{\partial \theta}+\bar{\zeta} \frac{\partial}{\partial \bar{\theta}}\right) \phi_{2} . \tag{16c}
\end{align*}
$$

The form of constraints depends here on the choice of parametrization. From equations (16b) and ($16 c$) it follows immediately that the constraints $\partial \phi_{1} / \partial \theta=0$ and $\partial_{\phi_{2}} / \partial \bar{\theta}=0$ are invariant. Of course, they are no longer implied by the conditions (任) $)_{\alpha \beta} \phi_{1} / \partial \theta_{\alpha}=0$ or $\partial\left(\Pi_{ \pm}\right)_{\alpha \beta} \phi_{2} / \partial \bar{\theta}_{\beta}=0$. From equation (14) we see that for every parametrization four conditions can be written, namely

$$
\begin{array}{ll}
\left(\Pi_{ \pm}\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\alpha}} \phi_{0}=0, & \left(\Pi_{\mp}\right)_{\alpha \beta} \frac{\partial}{\partial \bar{\theta}_{\beta}} \phi_{0}=0 \\
\left(\frac{\partial}{\partial \theta_{\alpha}}-\frac{1}{2} \mathrm{i}\left(\bar{\theta} \Pi_{ \pm} \gamma_{\mu}\right)_{\alpha} \frac{\partial}{\partial x_{\mu}}\right)\left(\Pi_{\mp}\right)_{\alpha \beta} \phi_{0}=0 \\
\left(\Pi_{ \pm}\right)_{\alpha \beta}\left(\frac{\partial}{\partial \bar{\theta}_{\beta}}-\frac{1}{2} \mathrm{i}\left(\Pi_{ \pm} \gamma_{\mu} \theta\right)_{\beta} \frac{\partial}{\partial x_{\mu}}\right) \phi_{0}=0 \\
\left(\Pi_{ \pm}\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\alpha}} \phi_{1}=0, & \left(\Pi_{\mp}\right)_{\alpha \beta} \frac{\partial}{\partial \bar{\theta}_{\beta}} \phi_{1}=0 \\
\left(\Pi_{\mp}\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\alpha}} \phi_{1}=0, & \left(\Pi_{ \pm}\right)_{\alpha \beta}\left(\frac{\partial}{\partial \bar{\theta}_{\beta}}-\mathrm{i}\left(\Pi_{ \pm} \gamma_{\mu} \theta\right)_{\beta} \frac{\partial}{\partial x_{\mu}}\right) \phi_{1}=0 \\
\left(\Pi_{ \pm}\right)_{\alpha \beta} \frac{\partial}{\partial \theta_{\alpha}} \phi_{2}=0, & \left(\Pi_{\mp}\right)_{\alpha \beta} \frac{\partial}{\partial \bar{\theta}_{\beta}} \phi_{2}=0 \\
\left(\Pi_{ \pm}\right)_{\alpha \beta} \frac{\partial}{\partial \bar{\theta}_{\beta}} \phi_{2}=0, & \left(\frac{\partial}{\partial \theta_{\alpha}}-\mathrm{i}\left(\bar{\theta} \Pi_{ \pm} \gamma_{\mu}\right)_{\alpha} \frac{\partial}{\partial x_{\mu}}\right)\left(\Pi_{\mp}\right)_{\alpha \beta} \phi_{2}=0 . \tag{17c}
\end{array}
$$

The conditions (17) impose various restrictions on representations of the Lorentz group 10 which components of superfields belong, or they imply connections between these mmponents.

25. Representations of the algebra D

The possible parametrizations are the same as in the case $C^{ \pm}$. The superfields are connected by the relations

$$
\begin{align*}
& \phi_{1}(x, \theta, \bar{\theta})=\phi_{0}\left(x_{\mu}+\frac{1}{2} \mathrm{i} \bar{\theta} \gamma_{\mu} \theta, \theta, \bar{\theta}\right) \\
& \phi_{2}(x, \theta, \bar{\theta})=\phi_{0}\left(x_{\mu}-\frac{1}{2} \mathrm{i} \bar{\theta} \gamma_{\mu} \theta, \theta, \bar{\theta}\right) . \tag{18}
\end{align*}
$$

The group element action is

$$
\begin{align*}
& \exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)] \phi_{0}(x, \theta, \bar{\theta})=\phi_{0}\left(x_{\mu}+\frac{1}{2} \mathrm{i}\left(\bar{\zeta} \gamma_{\mu} \theta-\bar{\theta} \gamma_{\mu} \zeta\right), \theta+\zeta, \bar{\theta}+\bar{\zeta}\right) \tag{19a}\\
& \exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)] \phi_{1}(x, \theta, \bar{\theta})=\phi_{1}\left(x_{\mu}-\mathrm{i} \bar{\theta} \gamma_{\mu} \zeta-\frac{1}{2} \mathrm{i} \bar{\zeta} \gamma_{\mu} \zeta, \theta+\zeta, \bar{\theta}+\bar{\zeta}\right) \tag{19b}\\
& \exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)] \phi_{2}(x, \theta, \bar{\theta})=\phi_{2}\left(x_{\mu}+\mathrm{i} \bar{\zeta} \gamma_{\mu} \theta+\frac{1}{2} \mathrm{i} \bar{\zeta} \gamma_{\mu} \zeta, \theta+\zeta, \bar{\theta}+\bar{\zeta}\right) \tag{19c}
\end{align*}
$$

or, in the infinitesimal form

$$
\begin{align*}
& \delta_{\zeta} \phi_{0}=\left(\frac{1}{2} \mathrm{i}\left(\bar{\zeta} \gamma_{\mu} \theta-\bar{\theta} \gamma_{\mu} \zeta\right) \frac{\partial}{\partial x_{\mu}}+\zeta \frac{\partial}{\partial \theta}+\bar{\zeta} \frac{\partial}{\partial \bar{\theta}}\right) \phi_{0} \tag{20a}\\
& \delta_{\zeta} \phi_{1}=\left(-\mathrm{i} \bar{\theta} \gamma_{\mu} \zeta \frac{\partial}{\partial x_{\mu}}+\zeta \frac{\partial}{\partial \theta}+\bar{\zeta} \frac{\partial}{\partial \bar{\theta}}\right) \phi_{1} \tag{20b}\\
& \delta_{\zeta} \phi_{2}=\left(\mathrm{i} \bar{\zeta} \gamma_{\mu} \theta \frac{\partial}{\partial x_{\mu}}+\zeta \frac{\partial}{\partial \theta}+\bar{\zeta} \frac{\partial}{\partial \bar{\theta}}\right) \phi_{2} \tag{20c}
\end{align*}
$$

The constraints invariant under both supersymmetry transformations and space inversion are

$$
\begin{array}{ll}
\left(\frac{\partial}{\partial \theta_{\alpha}}-\frac{1}{2} \mathrm{i}\left(\bar{\theta} \gamma_{\mu}\right)_{\alpha} \frac{\partial}{\partial x_{\mu}}\right) \phi_{0}=0, & \left(\frac{\partial}{\partial \bar{\theta}_{\alpha}}-\frac{1}{2} \mathrm{i}\left(\gamma_{\mu} \theta\right)_{\alpha} \frac{\partial}{\partial x_{\mu}}\right) \phi_{0}=0 \\
\frac{\partial}{\partial \theta} \phi_{1}=0, & \left(\frac{\partial}{\partial \bar{\theta}_{\alpha}}-\mathrm{i}\left(\gamma_{\mu} \theta\right)_{\alpha} \frac{\partial}{\partial x_{\mu}}\right) \phi_{1}=0 \\
\frac{\partial}{\partial \bar{\theta}} \phi_{2}=0, & \left(\frac{\partial}{\partial \theta_{\alpha}}-\mathrm{i}\left(\bar{\theta} \gamma_{\mu}\right)_{\alpha} \frac{\partial}{\partial x_{\mu}}\right) \phi_{2}=0 . \tag{21c}
\end{array}
$$

With the help of the projectors $\Pi_{ \pm}$one can obtain the chirial form of the constraints.

3. Nonlinear realizations and Cartan forms

3.1. General remarks

As is well known, nonlinear realizations of the group G which are linear on the subgroup H are generated by action G on the coset space G / H. Let G be the supersymmetry group and H the Lorentz group L. Then G / L is superspace. The action of G on the superspace has been determined in $\S 2$.

Let the superspace be parametrized by x_{μ} and bispinor fields $\psi(x)$ and $\psi(x)$. Because the supersymmetry transformations must preserve the Hermitian character of x_{μ}, not all parametrizations are admissible.

Nonlinear realizations and Cartan forms corresponding to the Gel'fand-Lictman algebras are given below.

3.2. The algebras $A^{ \pm}$

All three parametrizations $(5 a),(5 b),(5 c)$ are allowed. Correspondingly we have $\exp (\mathrm{i} a P)$:

$$
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+a_{\mu}, \quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\left(1-\frac{1}{2} \mathrm{i} \alpha^{2} \Pi_{ \pm}(\gamma a)\right) \psi(x)
$$

opl($(\bar{W} W+\bar{W} \zeta))$:

$$
\begin{align*}
& x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+\frac{1}{2} \mathrm{i} \lambda^{2}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \zeta\right) \\
\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)= & \psi(x)+\left(1+\frac{1}{2} \mathrm{i} \alpha^{2} \Pi_{ \pm}(\gamma x)\right) \zeta-\frac{1}{12}(\alpha \lambda)^{3} \Pi_{ \pm} \gamma_{\mu}(\zeta-\psi(x)) \\
& \times\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \zeta\right) \tag{22a}
\end{align*}
$$

exp(iaP):

$$
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+a_{\mu}, \quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\psi(x)
$$

eq[i($\bar{\zeta} W+\bar{W})]$:

$$
\begin{gather*}
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+\frac{1}{2} \lambda^{2}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \zeta\right) \\
\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\psi(x)+\left(1+\mathrm{i} \alpha^{2} \Pi_{ \pm}(\gamma x)\right) \zeta-(\alpha \lambda)^{3} \Pi_{ \pm} \gamma^{\mu}\left(\frac{1}{3} \zeta+\frac{1}{6} \psi(x)\right) \\
\times\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \zeta\right) \tag{22b}
\end{gather*}
$$

exp(iaP):

$$
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+a_{\mu}, \quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\left(1-\mathrm{i} \alpha^{2} \Pi_{ \pm}(\gamma a)\right) \psi(x)
$$

upli($\bar{\zeta} \bar{W}+\bar{W}()]:$

$$
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+\frac{1}{2} \mathrm{i} \lambda^{2}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \zeta\right)
$$

$\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\psi(x)+\zeta+(\alpha \lambda)^{3} \Pi_{ \pm} \gamma^{\mu}\left(\frac{1}{6} \zeta+\frac{1}{3} \psi(x)\right)$

$$
\begin{equation*}
\times\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \zeta\right) \tag{22c}
\end{equation*}
$$

whe α and λ are dimensional constants. The Cartan forms are

$$
\omega_{\mu}^{p}=\mathrm{d} x_{\mu}+\frac{1}{2} \mathrm{i} \lambda^{2}\left(\mathrm{~d} \bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \mathrm{d} \psi(x)\right)
$$

$\Delta^{*}=\mathrm{d} \psi(x)+\frac{1}{2} \mathrm{i} \alpha^{2} \Pi_{ \pm}((\gamma x) \mathrm{d} \psi(x)-(\gamma d x) \psi(x))$

$$
\begin{align*}
& +\frac{1}{12}(\alpha \lambda)^{3}\left(\mathrm{~d} \bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \mathrm{d} \psi(x)\right) \Pi_{ \pm} \gamma^{\mu} \psi(x) \tag{23a}\\
& \omega_{\mu}^{p}=\mathrm{d} x_{\mu}+\frac{1}{2} \mathrm{i} \lambda^{2}\left(\mathrm{~d} \bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \mathrm{d} \psi(x)\right)
\end{align*}
$$

$v^{*}=\mathrm{d} \psi(x)-\mathrm{i} \alpha^{2} \Pi_{ \pm}(\gamma \mathrm{d} x) \psi(x)+\frac{1}{12}(\alpha \lambda)^{3}\left(\mathrm{~d} \bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \psi(x)\right.$
$\left.-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \mathrm{d} \psi(x)\right) \Pi_{ \pm} \gamma^{\mu} \psi(x)$
$\omega_{\mu}^{p}=\mathrm{d} x_{\mu}+\frac{1}{2} \mathrm{i} \lambda^{2}\left(\mathrm{~d} \bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{+} \gamma_{\mu} \mathrm{d} \psi(x)\right)$
$\|^{\prime}=\left(1+\mathrm{i} \alpha^{2} \Pi_{ \pm}(\gamma x)\right) \mathrm{d} \psi(x)+\frac{1}{12}(\alpha \lambda)^{3}\left(\mathrm{~d} \bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \psi(x)\right.$
$\left.-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \mathrm{d} \psi(x)\right) \Pi_{ \pm} \gamma^{\mu} \psi(x)$.
33. The algebras $B^{ \pm}$

Thesame parametrizations as in the case of algebras $A^{ \pm}$can be considered, so we have upl(iaP):

$$
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+a_{\mu}, \quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\left(1-\frac{1}{2} \mathrm{i} \alpha^{2} \Pi_{ \pm}(y a)\right) \psi(x)
$$

$\operatorname{tap}[(\bar{W}+\bar{W} \zeta)]:$

$$
\begin{equation*}
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}, \quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\psi(x)+\left(1+\frac{1}{2} i \alpha^{2} \Pi_{ \pm}(y x)\right) \zeta \tag{24a}
\end{equation*}
$$

$\exp (i a P):$

$$
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+a_{\mu}, \quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\psi(x)
$$

$\exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)]:$

$$
\begin{equation*}
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}, \quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\psi(x)+\left(1+\mathrm{i} \alpha^{2} \Pi_{ \pm}(\gamma x)\right) \zeta \tag{246}
\end{equation*}
$$

$\exp (i a P):$

$$
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+a_{\mu}, \quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\psi(x)+\left(1+\mathrm{i} \alpha^{2} \Pi_{ \pm}(\gamma a)\right) \psi(x)
$$

$\exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)]:$

$$
\begin{equation*}
x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}, \quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\psi(x)+\zeta . \tag{24c}
\end{equation*}
$$

The Cartan forms are

$$
\begin{align*}
& \omega_{\mu}^{p}=\mathrm{d} x_{\mu} \\
& \omega^{\psi}=\mathrm{d} \psi(x)+\frac{1}{2} \mathrm{i}^{2} \Pi_{ \pm}((\gamma x) \mathrm{d} \psi(x)-(\gamma \mathrm{d} x) \psi(x)) \tag{25a}\\
& \omega_{\mu}^{p}=\mathrm{d} x_{\mu} \\
& \omega^{\psi}=\mathrm{d} \psi(x)-\mathrm{i} \alpha^{2} \Pi_{ \pm}(\gamma \mathrm{d} x) \psi(x) \tag{25b}\\
& \omega_{\mu}^{p}=\mathrm{d} x_{\mu} \\
& \omega^{\psi}=\left(1+\mathrm{i} \alpha^{2} \Pi_{ \pm}(\gamma x)\right) \mathrm{d} \psi(x) \tag{25c}
\end{align*}
$$

3.4. The algebras $C^{ \pm}$

Because of the commutation rules $\left[P_{\mu}, W\right]=\left[P_{\mu}, \bar{W}\right]=0$ we have essentially one admissible parametrization (equation (13a)). We obtain
$\exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)]:$
$x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+\frac{1}{2} \mathrm{i} \lambda^{2}\left(\bar{\zeta} \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \zeta\right), \quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\psi(x)+\zeta$.
Translations act in the standard fashion. The Cartan forms are

$$
\begin{align*}
& \omega_{\mu}^{p}=\mathrm{d} x_{\mu}+\frac{1}{2} \mathrm{i} \lambda^{2}\left(\mathrm{~d} \bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \Pi_{ \pm} \gamma_{\mu} \mathrm{d} \psi(x)\right) \\
& \omega^{\psi}=\mathrm{d} \psi(x) \tag{27}
\end{align*}
$$

3.5. The algebra D

The admissible parametrization is the same as in the cases $C^{ \pm}$. We have $\exp [\mathrm{i}(\bar{\zeta} W+\bar{W} \zeta)]:$

$$
\begin{align*}
& x_{\mu} \rightarrow x_{\mu}^{\prime}=x_{\mu}+\frac{1}{2} \mathrm{i} \lambda^{2}\left(\bar{\zeta} \gamma_{\mu} \psi(x)-\bar{\psi}(x) \gamma_{\mu} \zeta\right) \tag{28}\\
& \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\psi(x)+\zeta
\end{align*}
$$

with the standard action of translations. The Cartan forms are

$$
\begin{align*}
& \omega_{\mu}^{p}=\mathrm{d} x_{\mu}+\frac{1}{2} \mathrm{i} \lambda^{2}\left(\mathrm{~d} \bar{\psi}(x) \gamma_{\mu} \psi(x)-\bar{\psi}(x) \gamma_{\mu} \mathrm{d} \psi(x)\right) \\
& \omega^{\psi}=\mathrm{d} \psi(x) \tag{29}
\end{align*}
$$

4 Remark

We wish to make one comment about Lagrangians which are invariant under the action of the transformations described above. In the linear case, the existence of the renormalizable Lagrangian which is invariant under the Wess-Zumino supersymmetry tansformations suggests the existence of such Lagrangians at least in the cases $C^{ \pm}$and D. In the nonlinear case, dynamics is introduced by the use of Cartan forms (Volkov and Akulov 1973). The resulting theories are non-renormalizable.

Adtnowledgments

Authors are grateful to Professors J Lopuszanski and V Ogievetsky for interesting discussions and remarks.

Rederences

Ferrara S, Wess J and Zumino B 1974 CERN Preprint TH 1963
Geftand J A and Lichtman B P 1972 Problems of Theoretical Physics Memorial Volume to I E Tamm (Moscow) p 37
Skam A and Strathdee J 1974 ICTP Trieste Preprint
Volkov D V and Akulov V P 1973 Phys. Lett. 46B 109
Wes J and Zumino D 1974 Nucl. Phys. B 7039

