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Repmentations of supersymmetry algebras with Dirac
ispinor generators

P Kosiiski, J Rembielifiski and W Tybor
Institute of Physics, University of Lodz, Lodz, Narutowicza 68, Poland
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Abstract. Explicit formulae for linear and nonlinear realizations of the supersymmetry
groups with Dirac bispinor generators are given and Cartan forms are obtained.

1. Istroduction

Swersymmetry algebras introduced recently by several authors (Wess and Zumino
1974, Volkov and Akulov 1973, Gel’fand and Lichtman 1972) bring together bosons
adfermions into irreducible multiplets. This remarkable property results from the fact
tatthe supersymmetry algebra contains both commutators and anticommutators. The
spersymmetry algebra considered by Wess and Zumino (1974), and from another
point of view by Volkov and Akulov (1973), has the following form:

{Q,, Qs}=20,.,P*
{Q., Qs}={Q,, Q;}=0 ‘ (1)
[Q.,P.]=0

where Q, is the two-component spinor. It is interesting that this algebra is the only
Possible non-trivial extension of Poincaré algebra by the two-component spinor Q.
All possible extensions of the Poincaré algebra by a four-component bispinor W

Bave been _investigated by Gel’'fand and Lichtman {1972). They found that there are
®ven possibilities

d (P, WI=ILy,W, [P, W]=-WILy,,
W, W={W, W}=0,  {W, W}=ILOP),
P PWsLyWw, (B, W=-WILy,
. W, wi={W, w}=0, {W, W}=0,
[P, W]=0, [P, W]=0,
. W, Wy={W, W}=0,  {W, W}=TL.(P),
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424 P Kosiriski, J Rembieliriski and W Tybor

wheret
IL.= %(1 +ys).

In the present paper in § 2 we investigate the linear, and in §3 the nonlinea,
realizations of the supersymmetry group with generators obeying the Ge]’fand.
Lichtman algebras.

2. Linear representations

2.1. General remarks

To obtain the linear representations of the Gel’fand-Lichtman supersymmetry we use
the beautiful method of Salam and Strathdee (1974) extended by Ferrara et al (1974),
The representations of the supersymmetry group G are induced from those of the
Lorentz group L. We are interested in the action of the generators P, and Wona
superfield ¢(x, 6, 8) defined on a cosets space (superspace), where the components of
the constant bispinors 6 and 6= @'y, are the generating elements of the Grassman
algebra.

Let us start with some remarks.

(i) The algebras A*, B*, C* are not invariant under space inversion.

(ii) The algebras A*, B*, and C* contain anticommutators of the form {F, F'}=9,
which implies an indefinite metric in the space of statesi.

(iii) Re-deﬁmng P,»P,, W>R'Wand lettmg R tend to infinity we see that the
algebras B* are the contractions of the algebras A*. Putting P, »R™'P,. W-R Hy
we can show in a similar manner that the algebras C* are the contractions of the A*
too.

(iv) The algebras C™ and D contain the algebra of Wess and Zumino as 2
subalgebra.

(v) The algebras A*, B and C* have ideals generated by W= [.W and
W, = WII,. The quotlent algebras P®W® W/ W, @® Wx. are isomorphic to the Wess-
Zumino algebra in the cases A™ and C*, and to the trivial one

{w,, Wt}={W=, Wg}={Wm W:t}=0 [Pw W.]=0

in the cases B*. So the supersymmetry constraints W= = W = 0 imply represent-
tions of the quotient algebra. The constraints W.¢ =0 and W=¢ =0 have, in
parametrizations, the forms

0 9
(H$)asé—6-';¢’ =0 and  (LJwz¢=0

respectively. B
(vi) A superfield can be expanded in a power series in 8, and 8:

¢(x, 6, 0—) = z ¢[al...ak][l§1--.3.r]0m . ea,ﬁ_g, . 0—3_'.

t
s=Ts
TWe use the Dirac matrices with the following properties: {y,, v.}= 211“,,‘\1 =Y 70'70’ 5

¥i=1, m,, =diag(+ ~ ~ ).
+ We are grateful to Professor J T Lopuszanski for this remark.
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has a finite number of terms because the Grassman algebra generated by
mex%anlss“:‘i?ute Fields ¢ (x){* -+ *MB1-- A1 gpe antisymmetric in indices [a; . .. a;]
4. and 4,]. The number of independent components of ¢ (x)™™ - oy B'quuals
Tmdwl’[’heser fields are generally reducible. If the superfield ¢(x, 6, §) transforms
)rdm to the representation D of the Lorentz group then the coefficients
;E‘E? - pelong to the representation D ® D, ® D,, where
Do(D_o)"‘
Dy(D,)~D¥*®D"
Dy(D,)~DE®2D” 3)
Dy(D;) ~D¥@D%
DyD,)~D.

Imposing on a superfield in the cases A*, B* and C* one of the conditions W;d) Oor
#.¢ =0 one finds that D, or D, reduces to D} or D, where

D6~DOO D6~D°°
D;~D¥ D{~D%

D;~D® D;~D% - @)
D;~D¥ Di~D%

Dy~D% D,~D%.

12 Representations of the algebras A

We can choose three different parametrizations of the superspace

expli(xP+ WO + W)] = ¢q(x, 6, 8) (5a)
expli(xP)] exp[i( WO + GW)] = ¢,(x, 6, §) (5b)
exp[i( W6 + 6W)] expli(xP)] = 6,(x, 8, 6). ~ (5¢)

These superfiel s are connected by the relations
$1(x, 8, 8) = ¢o(x, 6 ~HIL.(yx)6, § +361L.(yx)) (6a)
$2(x, 6, 6) = o(x, 6 +3iIL.(vx)6, §—50TL (yx)). (6b)

?ﬁaﬂiOn of the translation and the supersymmetry transformation on the superfields

U)o, 6, 6) = ol + a, (1 HilL(va))6, 6(1 + 51, (ya)

W+ Wi, 0, 6)
Golx +3i(ZTL. 7,6 — 61L.y,0), 0 +(1+3TL.(yx)){ — BILy*(L  6)
X({TL.y,6— 611, y,0),
0+ {1~ L (1)) + $5(2TL 7,6 ~ 611 7,0 (F - )L v*) (7)
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exp(iaP)$(x, 6, 8)=¢:(x+a,6,0)
expli(fW+ W)11(x, 6, 6)
= ¢1(x, +3({TLv,0 — OTL.y,0), 6+ (1 +ill(vx)){ — Ly (3¢ +1g)
X ({TL. 7,0 — 011 v,0),
8+ Z(1—ilL.(yx)) + ({TL.y,0 — 0TLy, D) GE +20)TLv*) (7
exp(iaP)s(x, 0, ) = ¢,(x +a, (1 —ill.(ya)), H(1 +ill.(ya))
exp[iCW+ W)]a(x, 6, 6)
= ¢y, +H({TL.7,0 — 0TL.y,0), 0+ +TLy* (GO +80)
X ({11, 7,6 — 011 7,.0),
8+~ (T y,6— 0TL.y, )G +3).v") (o)

or, in the infinitesimal form

3 1. d Ln 3
a0 = (a“a—i:-%1Ht(7a)035+%101'l¢(7a)a—6) b0

b= | HEIL 7,0~ Ly, 0)+ (1+HIL ()¢ + 5Ty "0 (ML 0= AL
(AL )~ 5(TLy,6 ~ MLy, DALy S oo )
b= (a2 )on

[ 9] = - d
Orb1 = [%i(mxn@ - OILM);;:—+ ((1+HTL(yx)) ~ TLy* 36Ty, 0 - 1Lyl

+ 0~ (0) + (L, 6 ~ Ly, OHIL )22 b g

d . 0 .- .0
aﬁax# 1Hi(7a)660+x01'[*(ya)a—0=>¢2

bub2=

. r Y a 3 g a
8= [%1({1'[;)’,;9 - OH:'YH.D;"' ({+H17“%0(£Ht7y-0 - oni‘y“'g))-a—g-
"

+(F~ (T3, - MLy, BOTLY) 22 |62 &

In these cases no simple constraints beyond those discussed above, ic. Wo9=0

W= =0, can be imposed.

2.3 Representations of the algebras B*
In this case three different parametrizations (equations (5a), (5b) and (5¢)) mbilso;
chosen. The superfields ¢,, ¢; and ¢, are connected by relations (6a) and (60)-
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ion of the group elements on the superfields is

a9 = dolx 0, (1 —HTLya)®, B0 +3TL(ye)

i+ WDIbalx & ) )

= golx, -+ (1 HAIL(y)), 6+ (1 —3IL () (9a)
afia(x 6, )= dr(x +a, 6, D)
[+ WOla(3: 6, 8) = :(x, 6+(1 L) 8+ 1 —iTL(yx)) o8)
expliaP)62(% 6, ) = ¢o(x +a, (1-ill(ya))9, (1 +ill.(ya)) ‘
aglilfW+ W12, 6, )= do(x, 0+4 8+D) 00
or, 1 the infinitesimal form ‘

Batbo= <au£: - %iﬂt(va)eb%%iént(ya)g%) o

sabo=( (AL )L+ EL-HIL ) 550 (100)

(
(

(AT + F Ty ) b (108)

P
8..= auaj)dh
i1

(bo =

6;(#1 =
a . d .= N

0ap2 = (agaxu —1Ht(ya)069 +i6I1.(ya) a§)¢2

d -9
52 = (fa_é'*‘fgb-')tﬁz- (10¢)

Because 4 and @ enter in the differential operators (equation (10)) only as coefficients
belore 4/60 and /00 respectively, the conditions 0¢/30=0 and 4¢/36 =0 are
spersymmetry-invariant constraints. If these constraints are imposed we have

d ) 3
mﬁ) =0 ——i— = —— = —_— =
“”‘aof ) (H:)apaeﬂcb 0, (Hz)asaeatb 0, (Ht)agaosd> 0.

The first two constraints are the same as in the case A*. We can show that from the
oer two it follows again that 3¢/36 =0 and 3¢/ 30 =0. Indeed, let us consider, for
@mple, the third parametrization. Then W. and W, act as (IL.)eg(d/ 30s) and
[).53/58,). From the commutation rules

[PF" Wi] = ‘Y,u.W*, [Py.a W:l:] =- W?Yp. (1 1)

:lld;.tfrflg the constraints under consideration, W.¢ =0 and W.$ =0, one obtains
“Yand W.¢ =0 respectively. Thus

" 3¢/30 =We¢ =(W.+ W) =0

36/00=We = (W, + Wa)p =0.
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The same can be shown with small modification for the other parametrizationg. Finally
we have the following possibilities for the constraints: J

3
(Ht)a855;¢ =0 (12a)
(Le)opmap =0

F, 05603 (lzb)
3
752=0 (12¢)
3
53¢ =0 _ (124)

In accord with these, various representations of the Lorentz group occur in the
superfield expansion (see table 1).

Table 1. The Lorentz transformation properties of superfield components.

Constraints Algebra B* Algebra B~
(12a) D®Di®D, D®D®D,
(12b) D®D,®D! D®D,®D;
(12¢) D®D, D®D,

(12d) D®D, D® D,
(12a) and (12b) D®D,®D. D®Di®D!
(12a) and (12d) D®D; D®Dj
(12b) and (12¢) D®D, D®D,.

2.4 Representations of the algebras C*

In this case, because of the commutation rules [P,, W]=[P,, W1=0, the possible
parametrizations are

expli(xP + W+ W8)] = ¢(x, 6, §) (13a0)
expli(xP + §W)] exp(iW8) = ¢,(x, 6, 8) (134)
expli(xP + W8)] exp(iW) = ¢,(x, 6, §). (13¢)

The superfields are connected by the relations

&1(x, 8, 8) = Po(x, +3i611.v,6, 6, §)

®3(x, 6, 8) = do(x, —310T1.7,.8, 6, 9).
The group element action is
exp[iCW + W0)1do(x, 6, 8) = do(x,, +5(FTL. y,0 — 01Ly,0), 6+L 6+0)
expli({W+ WO)Ids(x, 6, 6) = ¢,(x,, —i6TL.y,L —3illLoy, L, 0+, 6+0)
expli({W + WD)Ids(x, 6, 8) = do(x,, +ilTL.y,0 +5ilTLy, L, 6+4 6+
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adin all three cases exp(iaP)é(x, 6, 8) = d(x +a, 6, 6). In the infinitesimal form we
have
e . 3 8 -0 ;
subo= (BT, 0~ ALy, 5 =+ (2 + )0 (16a)
S I
sebo=(-0nr+ 3+ B ) (16b)
= d 4 -0
8¢z (I{H*y“oax“+§86+§60)¢2' (16¢)

The form of constraints depends here on the choice of parametrization. From equa-
jons (16b) and (16¢) it follows immediately that the constraints 9¢;/06 =0 and

38=0 are invariant. Of course, they are no longer implied by the conditions
#ll.)as$1/30, =0 OF o(I12)apd2/ 86 =0. From equation (14) we see that for every
parametrization four conditions can be written, namely

F} 3
(H&)aBE‘bO - Oy (I-LF) mB'aTB(ﬁO - 0
Y- __3_) _
(5457, Te)epo =0
' AV
(L) 5 50,0075~ 0= (170)
M)op—stp=0,  (Medog—ar=0
taBaoa 1™ Y :aBaO—B 1
(Ie) g —p; =0 (L) (—a—~—i(n 0) i)qs =0 (17b)
:aﬁaea 1= Y +/af 80-3 ﬂ:'Yy. Baxp. 1
M)epsthy=0,  (Ie)opa2=0
*""aea‘bz" ’ T ASE
Metda=0,  (SmillLy)ez— )t =0. (170
taﬁaés 27 Y aea :Yp. aax“ F/aBY2 . c

Theconditions (17) impose various restrictions on representations of the Lorentz group

W which components of superfields belong, or they imply connections betweén these
“mponents, _

2
23, Representations of the algebra D
g:mssible parametrizations are the same as in the case C~. The superfields are
lected by the relations
¢1(x7 63 0—) = ¢0(xy. +%i§'yy,93 0’ é-)
¢2(x, 6, 8) = do(x, —310v,6, 6, 6). (18)
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The group element action is

expli(fW + W)]bo(x, 6, 8) = olx, +3i({7,0—6v,0), 6+, §+0) (1%
exp[l(ZW+ W()]¢1(x’ 03 0—) = ¢l(xp. —10_‘)’"; '%iz’h{, 6+ L e_+ Z) (lgb)
exp[i({W + W0)]éa(x, 6, 8) = alx, +ily,0+3ily.L, 0+(, G+7) (199
or, in the infinitesimal form
- - 4 .4 -9
0rbo= (%I(C’Yua - oyuf)éx_#"‘ 556'*‘ £a~0=)¢° (20a)
= .3 9 =d
bet = (~ibnds+ (o4 ), o
- 3 .38 -9
a0+ o0+ E) o 9

The constraints invariant under both supersymmetry transformations and space inver-
sion are

9 _uG i.) = (L_l- AV

(aoa ZI(OYp)aax“ ¢O 07 ao'a 2‘(7}1.0)aax#>¢0— 0 (21(1}
0 J . 0

= 5:=0, (1w )tr=0 o
2 4 . - 9 )

—,= 2 ), =0. 1
26,0, (s iBrz)es=0.

With the help of the projectors I, one can obtain the chirial form of the constraint.

3. Nonlinear realizations and Cartan forms

3.1. General remarks

As is well known, nonlinear realizations of the group G which are linear oo th
subgroup H are generated by action G on the coset space G/H. Let G be i
supersymmetry group and H the Lorentz group L. Then G/L is superspace. Ti¢
action of G on the superspace has been determined in § 2. -

Let the superspace be parametrized by x, and bispinor fields #(x) and W)f
Because the supersymmetry transformations must preserve the Hermitian character®
x,, not all parametrizations are admissible. i

Nonlinear realizations and Cartan forms corresponding to the Gel’fand-Lichtm?
algebras are given below,

3.2. The algebras A*
All three parametrizations (5a), (5b), (5¢) are allowed. Correspondingly we h¥
exp(iaP):

BB AL=X, T, Y)Y () = (1 TL(yad(x)
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atifW+ W)l _ )
%, X=X, FHA (T y, () — G ()L, 0)
o) =00+ (i T p) () Ty, (¢~ ()
X ({1, (x) — Y (). y,0)
aplaP):
X, X=X, Ay, P(x)=>¢'(x) = y(x)
e+ WO)I:
%= X=X, ATy, 0 (x) = (0T, y,0)
Hr)o ¥ (x) = ¥(x) + (1 +1a TL(yx)) — (A PTLoy* G +2(x))
X (I v, (%) — b (0)y, D)

expfiaP):

X, 2xL=x,+a, P(x)=>¢'(x") = (1 -ia’TL(ya))P(x)

efi{W+ W)

2,2 %, = X, FA (T y, (%) — G(x) L, y,0)
H2 ¥ () = d(x) +{ +(ad Ty G +3u(x))

X (T y, (x) — )Ly, 0)

wiere ¢ and A are dimensional constants. The Cartan forms are

w0} =dx, +AAX APy, (x) - F(x) Ly, dy(x))
V' =dh(x) i TL((x) dy(x) ~ (y dx)p(x))
+15(eA ) (A (T v, (x) = § () y,, A ()L y*y(x)
i =dx, +3A% AP0y, (x) — §(0)ILy, dy(x))
o =04(0)~ia[L(y dx)g(x) + (A @F (0L, v, 0 (x)
-J(x)ILn dy ()L y*¢(x)
= dx,, + APy, (x) — F(0)T., de(x))
v (l+ie (yx)) dr(x) +15(eh (A ()T y,p(x)
=)y, gLy y(x).

33 The algebras B*

431

(22a)

(22b)

(22¢)

(23a)

(23b)

(23¢)

Desame Parametrizations as in the case of algebras A* can be considered, so we have

iap),
XSxL=x,+a, ¥(x)=>¢'(x") = (1 -3’ (ya))y(x)
W+ WO):
Lox,=x, Y(x) =o' (x) = () + (1 +3ia TL(yx))¢

(24a)



432 P Kosiriski, J Rembieliriski and W Tybor

exp(iaP):

X, > X=X, +a,, $(x)->¢'(x) = ¥(x)
expli(fW+ WQ)J:

X, > X, =X, (x)> ¢ (x)=¢x)+(1 +ia2H=(yx)){ )
exp(iaP):

Xy > X=X, +a,, Y(x)~> ¢ (x") = g(x) + (1 +ia T ya))y(x)
expliCW + W) ]:

Xy > Xy = Xy, Y(x)>¢'(x) = px)+L. (24¢)
The Cartan forms are

op=dx,

w? = dy(x) +hia TL((yx) dy(x) — (v dx)¢(x)) (250)

wh=dx,

o* =d¢(x) —ie’T(y dx)¢(x) (25%)

oh=dx,

o’ =(1+ia’T(yx)) d¢(x). : (250

3.4. The algebras C*

Because of the commutation rules [P,, W]=[P,, W]=0 we have essentially one
admissible parametrization (equation (13a)). We obtain

expli(CW+ W¢)):
X, > X} = X, FHAX (v, (x) — (0)1y,0), (x)>¢'x)=g(x)+L 1)
Translations act in the standard fashion. The Cartan forms are

wf, = dx, +7A (AP (T, (x) = P(x) Ly, dib(x))

o’ =dy(x). @
3.5. The algebra D
The admissible parametrization is the same as in the cases C*. We have
expli(¢W+ W¢)]:
%> X = 0, N () F)9,0) @
P(x)>¢'(x) = ¢(x)+¢
with the standard action of translations. The Cartan forms are
wf=dx, +3i*(dd(x) v, (x) — F(x)y, dy(x)) (29)

¥ =dy(x).
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4 Remark

wewishto make one commen‘t about Lagrangians which are invariant under the action
the transformations described above. In the linear case, the existence of the
qpormalizable Lagrangian which is invariant under the Wess-Zumino supersymmetry
musformations suggests the existence of such Lagrangians at least in the cases C* and
 In the nonlinear case, dynamics is introduced by the use of Cartan forms (Volkov
od Akulov 1973). The resulting theories are non-renormalizable.
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